Reduction potentials of Rieske clusters: importance of the coupling between oxidation state and histidine protonation state.
نویسندگان
چکیده
Rieske [2Fe-2S] clusters can be classified into two groups, depending on their reduction potentials. Typical high-potential Rieske proteins have pH-dependent reduction potentials between +350 and +150 mV at pH 7, and low-potential Rieske proteins have pH-independent potentials of around -150 mV at pH 7. The pH dependence of the former group is attributed to coupled deprotonation of the two histidine ligands. Protein-film voltammetry has been used to compare three Rieske proteins: the high-potential Rieske proteins from Rhodobacter sphaeroides (RsRp) and Thermus thermophilus (TtRp) and the low-potential Rieske ferredoxin from Burkholderia sp. strain LB400 (BphF). RsRp and TtRp differ because there is a cluster to serine hydrogen bond in RsRp, which raises its potential by 140 mV. BphF lacks five hydrogen bonds to the cluster and an adjacent disulfide bond. Voltammetry measurements between pH 3 and 14 reveal that all the proteins, including BphF, have pH-dependent reduction potentials with remarkably similar overall profiles. Relative to RsRp and TtRp, the potential versus pH curve of BphF is shifted to lower potential and higher pH, and the pK(a) values of the histidine ligands of the oxidized and reduced cluster are closer together. Therefore, in addition to simple electrostatic effects on E and pK(a), the reduction potentials of Rieske clusters are determined by the degree of coupling between cluster oxidation state and histidine protonation state. Implications for the mechanism of quinol oxidation at the Q(O) site of the cytochrome bc(1) and b(6)f complexes are discussed.
منابع مشابه
Proton-coupled electron transfer reactions at Rieske [2Fe-2S] clusters: three oxidation states and four protonation states
Rieske clusters are unusual amongst [2Fe-2S] clusters because they are ligated by two cysteine and two histidine residues, and because their reduction potentials ([2Fe-2S]) are strongly pH dependent. The pH-dependence arises from deprotonation of the two histidine ligands, which coordinate the redox-active iron centre. Rieske clusters are important components of two respiratory enzymes, the cyt...
متن کاملComplete thermodynamic characterization of reduction and protonation of the bc(1)-type Rieske [2Fe-2S] center of Thermus thermophilus.
Rieske iron-sulfur (2Fe-2S) clusters play a central role in energy transduction by the quinone:cytochrome c oxidoreductases of the respiratory and photosynthetic chains (the bc1 and b6f complexes) and in the bacterial degradation of aromatic compounds.1 Distinguished from “ferredoxin-type” 2Fe-2S clusters by reduction potentials up to 700 mV higher, Rieske centers have one iron atom coordinated...
متن کاملTight binding of inhibitors to bovine bc1 complex is independent of the Rieske protein redox state. Consequences for semiquinone stabilization in the quinol oxidation site.
To determine the effect of the redox state of the Rieske protein on ligand binding to the quinol oxidation site of the bc(1) complex, we measured the binding rate constants (k(1)) for stigmatellin and myxothiazol, at different concentrations of decylbenzoquinone or decylbenzoquinol, in the bovine bc(1) complex with the Rieske protein in the oxidized or reduced state. Stigmatellin and myxothiazo...
متن کاملA cluster exposed: structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe-S proteins.
BACKGROUND Ring-hydroxylating dioxygenases are multicomponent systems that initiate biodegradation of aromatic compounds. Many dioxygenase systems include Rieske-type ferredoxins with amino acid sequences and redox properties remarkably different from the Rieske proteins of proton-translocating respiratory and photosynthetic complexes. In the latter, the [Fe2S2] clusters lie near the protein su...
متن کاملStructure of a water soluble fragment of the 'Rieske' iron-sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 A resolution.
BACKGROUND The 'Rieske' iron-sulfur protein is the primary electron acceptor during hydroquinone oxidation in cytochrome bc complexes. The spectroscopic and electrochemical properties of the 'Rieske' [2Fe-2S] cluster differ significantly from those of other iron-sulfur clusters. A 129-residue water soluble fragment containing the intact [2Fe-2S] cluster was isolated following proteolytic digest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 42 42 شماره
صفحات -
تاریخ انتشار 2003